
CajeASM v7.0+ Manual
Table Of Contents:
Basics:

1. Introduction into CajeASM
2. Command-Line Options
3. CajeASM GUI

Coding:
 1. Pseudo-Instructions

 1.1. BLT (Branch on less than), BGT (Branch on greater than)
 1.2. BGE, BLE (Branch on greater/less than or equal to)
 1.3. BLTI, BGTI (Branch on less/greater than immediate)
 1.4. BGEI, BLEI (Branch on less/greater than or equal to immediate)
 1.5. BEQI/BNEI (Branch on equal/not equal to immediate)
 1.6. SUBI/SUBIU Instruction
 1.7. LI (Load Immediate) Instruction
 1.8. MOV (move) Instruction
 1.9. B (Branch)
 1.10. BAL (Branch and Link)
 1.11. CL (Clear)

 2. Directives
 2.1. .org address
 2.2. .byte/.halfword/.word/.float
 2.3. .align alignment, (optional) fill
 2.4. .skip size, (optional) fill
 2.5. .incbin “filename.bin”
 2.6. .incasm/.inc/.include “filename.asm”
 2.7. hex { hex values }
 2.8. .ascii/.asciiz

 3. Labels & Defines
 4. Additional Information

 4.1. About Upper/Lower Values
 4.2. Decimal, Hexadecimal, Binary values
 4.3. Comments

Basics
Welcome, soon-to be ASM Hacker. I'm going to lead you
through this manual. First we start with the very basics and
explain what CajeASM is, what it does and how to use the
console-commands and the GUI. If you don't want to know
anything about the command-line version of CajeASM, just skip
to the CajeASM GUI part. But be sure to read “Introduction
into CajeASM” if you're new.

1. Introduction into CajeASM
So, what is “CajeASM” you might ask. Well, CajeASM is a N64
Assembler, more specific a MIPS R4300i Assembler. An
assembler does nothing else than “converting” human-readable
code into machine binary, aka the binary which the MIPS CPU is
able to read. We call this “human-readable” code, the so-called
“Instruction Set” and it's basically all the coding you saw before. A
great example would be:

The code above is our “human-readable” code. It later gets
translated to something like this:

And that's basically what CajeASM does. So, instead of figuring out
what each binary order is supposed to do (just imagine if you have
around 3000 lines of binary.. ewww) you simply learn the human-
readable way and then write your code, which CajeASM then

LUI T0, 0x8033
ORI T0, T0, 0xB264

101010110011010011111110101010101010

translates into MIPS Binary. So, the “human-readable” code is also
called: “Assembly” or shortened to simply “ASM”. If you actually
want to learn MIPS ASM, then look out on origami64.net as I'm
going to post there my ASM Tutorial soon.

2. Command-Line Options
Let's move on to the console command line options. If you're not
interested into the command line way, then skip this and look at
chapter “CajeASM GUI”. Basically, CajeASM is a console-command
application and let's you pass a few arguments and allows you to
tell the assembler directly what “command” it should do.

Here, the console-command list:

The first option is “-a”. Basically, it stands for “assemble” and does
what it says. It assembles an ASM file of your choice to a N64 ROM
of your choice. So, you would start CajeASM like this:

This would now start CajeASM and assembles the code in test.asm
to your ROM.

The next option is “-u”. It lets you check if there are any updates
available. It can take a while until CajeASM reacts (because it
connects to the internet etc.) and sooner or later you receive a
console message whether there's an update or not.

The third option is “-l”, it creates a listing file to show symbol
locations. It's useful for identifying where global data or procedures
are placed by the assembler in case you need to look them up or

CajeASM -a /rom:myROM /asm:test.asm

CajeASM -u

pass them into a debugger.

The fourth option is “-n” is nearly the same as -a, just that your code
isn't assembled to an already existing file, but instead put into a new
file.

The fifth and last option is “-h” and is nothing else than the help
message itself again.

3. CajeASM GUI
The CajeASM GUI is probably most likely what you want to see
because you probably don't give a fuck about command-lines and
it's way too hard for you. The GUI is the front-end of the console-
application and is faster and easier for normal users and/or for
those who want to assemble their code quickly.

As you can see above, the GUI is really simple to understand. It's
user-friendly and intuitive. Anyone should really understand what
each button is supposed to do. Select ROM, select ASM file, press
“Assemble!” and your code is assembled to the ROM and done. So,
there's nothing more to say to this.

CajeASM -l /rom:myROM /asm:test.asm

CajeASM -n /asm:test.asm -o:output.bin

Coding
Now we finally come to the more interesting part, I guess. The
“coding” part. Here, I'm going to (sum it up) explain the
functionality of CajeASM, including pseudo-instructions,
directives, the way how CajeASM handles decimal, hex and
binary values, labels and defines, etc. If you're not aware of
what some instructions here do, look at the end of the text file.
There's a list of all instructions used in this manual.

1. Pseudo-Instructions
The first chapter of the coding section. What are “pseudo-
instructions” you might ask. As the name implies already, pseudo-
instructions are nothing else than instructions, that do not truly exist
on the MIPS Instruction Set. These instructions are often made to
give the ASM programmer shortcuts and faster ways of assembling
their code without writing the same 2 or 3 lines again. A great
example would be BGE (Branch on greater than or equal to) which
is not a real MIPS instruction, but is implemented as pseudo-
instruction into CajeASM and CajeASM automatically translates it to
the real two instructions (SLT and BNE). So, the ASM programmer
doesn't have to care about this again and again. To sum it up:
Pseudo-instructions are not real MIPS instructions and are
translated by the assembler. They're mostly shortcuts for ASM
programmers, so they don't have to consider any of this stuff
themselves.

1.1 BLT (Branch on less than), BGT (Branch on greater
than)

This are our first two pseudo-instructions. BLT and BGT. BLT
checks if the source register is less than the target register and
BGT does the opposite and checks whether the source register is
greater than the target register. As you can most likely guess, these
are no real MIPS instructions. They're actually translated to two real
MIPS instructions. Let me give you an example.

The above instruction now checks if T0 > T1. This is the case, as T0
is 0x00003645 and T1 is 0x00003314. So, we would now jump to
the specified offset. But... what does the instruction look like when
it's translated to a real MIPS instruction? Here's the answer:

So, what happens there? First, SLT checks if T1 < T0. If this is the
case, then AT = 1. You see now, that both registers were just
swapped around. And obviously T1 < T0 is equivalent to T0 > T1.
Now BNE (Branch on NOT equal, real MIPS instruction) checks if
AT != 0. (R0 is the first register, but it's always 0. The value can't be
changed) As this is the case, we now branch to the specified offset.
CajeASM also allows you to let you use a different destination
register for SLT. If you didn't specify it, like I showed above with
BGT, then on default AT is used. If you want a different one you
write:

Which is then translated to:

ORI T0, R0, 0x3645
ORI T1, R0, 0x3314
BGT T0, T1, 0x00003680
NOP

SLT AT, T1, T0
BNE AT, R0, 0x00003680

ORI T0, R0, 0x3645
ORI T1, R0, 0x3314
BGT T2, T0, T1, 0x00003680
NOP

The same,I told you, applies to BLT also. The only difference is that
BLT is translated to a different real MIPS instruction. Can you guess
it? Correct. It simply puts T0 as source and T1 as target, so we get
T0 < T1 in SLT. Very simple.

See, it's really simple. And also the same like above applies and
you can also specify a different destination register for SLT.

Syntax:

BGT/BLT RS , RT , OFFSET (or label)
BGT/BLT RD , RS , RT , OFFSET (or label)

1.2 BGE/BLE (Branch on greater/less than or equal to)
This part is not going to be any more special than the last one, as
this is exactly the same like above. The syntax is still the same. But
still, I'm going to explain how the instruction do look like if they're
translated to real instructions.

Let's start with BGE. BGE checks whether the source register is
greater than or equal to the target register. BLE does the opposite
and checks whether the source register is less than or equal to the
target register. Let's do a quick example:

SLT T2, T1, T0
BNE T2, R0, 0x00003680

SLT AT, T0, T1
BNE AT, R0, 0x00003680

This checks now if T0 >= T1. This is the case and so we branch to
the specified offset. The instruction is translated to:

This time nothing is swapped here, instead we now use BEQ
instead of SLT. To clarify it: First SLT checks if T0 < T1. This is NOT
the case, as they're equal. So, AT = 0. Now BEQ checks if AT == 0.
This is the case and that's why we jump. Even if T0 was 0x3665, AT
still would be 0, as it checks if it is less than the target register. And
therefore it also would jump.

And now how would we do this with BLE? Well, you kinda guessed
it (maybe) we just swap T0 and T1 again in SLT.

It checks if T1 < T0. This is not the case, as T1 and T0 are equal.
So we get AT = 0. And then BEQ checks if AT == 0. Again, this is
the case and we branch. Now if T0 had the value 0x0056, SLT
checks if T1 < T0. That's not the case. T1 is bigger. So we get again
AT = 0 and then BEQ will branch again.

The difference is, as you see now, not that really big. Also, the same
with the “destination register” applies like explained in 1.1.

ORI T0, R0, 0x1058
ORI T1, R0, 0x1058
BGE T0, T1, 0x000861CC
NOP

SLT AT, T0, T1
BEQ AT, R0, 0x000861CC

SLT AT, T1, T0
BEQ AT, R0, 0x000861CC

Syntax:

BGE/BLE RS , RT , OFFSET (or label)
BGE/BLE RD , RS , RT , OFFSET (or label)

1.3 BLTI/BGTI (Branch on less than/greater than
immediate)

The purpose of these two instructions are exactly the same like BLT
and BGT, the only difference being that you're able to specify an
immediate value. Basically BLTI checks whether the source register
is less than the immediate value and BGTI checks whether the
source register is greater than the immediate value. The translation
is not different, just that there's now one more instruction.

Ex.:

This checks now if T0 < 0x44A6. This is not the case, so we won't
branch. The translation of BLTI to real MIPS code:

You see, the difference is pretty small once again. First we load
0x44A6 into the lower half of AT (AT = 0x000044A6) and then we
check if T0 < AT. That's not the case. So, AT = 0. And BNE checks

ORI T0, R0, 0x6666
BLTI T0, 0x44A6, 0x2C2024
NOP

ORI AT, R0, 0x44A6
SLT AT, T0, AT
BNE AT, R0, 0x2C2024

now if AT != 0. AT is 0, so we won't branch. You see, it's pretty
simple once again. The same with BGTI.

Ex.:

Again, the difference is like with BGT. We just swap AT and T0.

Syntax:

BLTI/BGTI RS , IMM (or define), OFFSET (or label)
BLTI/BGTI RD , RS , IMM (or define), OFFSET (or label)

1.4 BGEI/BLEI (Branch on greater/less than or equal to
immediate)

This one here also isn't special. As you know already what BGE
and BLE do, this one doesn't need any more information. Just
showing you the translation.

For BGEI:

Translated:

ORI AT, R0, 0x44A6
SLT AT, AT, T0
BNE AT, R0, 0x2C2024

ORI T0, R0, 0x6666
BGEI T0, 0x44A6, 0x2C2024
NOP

ORI AT, R0, 0x44A6
SLT AT, T0, AT
BEQ AT, R0, 0x2C2024

For BLEI:

Translated:

Syntax:

BGEI/BLEI RS , IMM (or define), OFFSET (or label)
BGEI/BLEI RD , RS , IMM (or define), OFFSET (or label)

1.5 BEQI/BNEI (Branch on Equal/not Equal to)
This is the last branch pseudo-instruction. It's basically clear what
this does and it's not really needed to mention what it does. The
difference is here that the source register is compared to an
immediate value. And don't fucking come up and ask why I added
these branch-immediate instructions. I did it, because I wanted it. If
you hate it, don't use it. Just saying.

BEQI:

BEQI is Translated to:

ORI T0, R0, 0x6666
BLEI T0, 0x44A6, 0x2C2024
NOP

ORI AT, R0, 0x44A6
SLT AT, AT, T0
BEQ AT, R0, 0x2C2024

ORI T0, R0, 0x6666
BEQI T0, 0x44A6, 0x2C2024
NOP

For BNEI:

is translated to:

Syntax:

BEQI/BNEI RS , IMM (or define), OFFSET (or label)
BEQI/BNEI RD , RS , IMM (or define), OFFSET (or label)

1.6 SUBI/SUBIU (Subtract Immediate (Unsigned))
Now, after we're done with pseudo branch instructions, we will now
continue with the other instructions. This one here is SUBI/SUBIU. If
you know MIPS, then you also know that there's no subtract
immediate instruction, instead there's only a register-type instruction
(SUB) available, but that's it. So, to “subtract” values you just made
use of the negative rule. All immediate values over 0x7FFF are
considered negative. So, you just converted the number you want
to subtract from the target register, into a negative number.
SUBI/SUBIU prevents this and simply lets you put in the normal

ORI AT, R0, 0x44A6
BEQ T0, AT, 0x2C2024

ORI T0, R0, 0x6666
BNEI T0, 0x44A6, 0x2C2024
NOP

ORI AT, R0, 0x44A6
BNE T0, AT, 0x2C2024

number already (without converting to negative) and CajeASM
assembles it correctly to ADDI/ADDIU.

Ex.:

The above subtracts T1 – 0x4444 and stores the result into T0.
CajeASM translates it to the real MIPS instruction:

0xBBBC = -0x4444. Basically said. I think there's nothing more to
add to this as this is kinda clear. It's simply a shortcut for ASM
programmers so they won't have to take out their fucking calculator.

Syntax:

SUBI/SUBIU RD , RT , IMM (or define)

1.7 LI (Load Immediate)
This pseudo-instruction is a bit more interesting. Simply said, it
allows you to load immediate values greater or less than 16-bit. In
this case LI translates to two different ways, depending on which
range the immediate value is in.

Ex.:

SUBI T0, T1, 0x4444

ADDI T0, T1, 0xBBBC

This instruction will load the immediate value 0x3648 into T0.
CajeASM translates the above instruction to:

No surprise, I guess. But LI also allows you to specify a value which
is above the 16-bit range. In this case LI translates differently. Ex.:

This would load the immediate value 0x444A92 into T0. CajeASM
translates the above to:

Once again, if you know these two simple instructions then you

LI T0, 0x3648

ORI T0, R0, 0x3648

LI T0, 0x444A92

LUI T0, 0x0044
ORI T0, T0, 0x4A92

know that this is quite obvious. T0 is 0x00440000 first and then ORI
shifts 0x4A92 to the lower half of T0, resulting in T0 = 0x00444A92.

And that's all I can say about it.

Syntax:

LI RT , IMM (or define)

1.8 MOV (move) instruction
This instruction is also simple to explain. Basically it let's you move
the target register content to the target register content. It's also a
pseudo-instruction, but the translation is pretty simple. You should
be able to get it quickly.

Would move T1 to T0.

MOV is translated to:

As you see, pretty simple. T0 = R0 + T1.

MOV T0, T1

ADD T0, R0, T1

1.9 B (Branch) Instruction
B, stands for “branch”, and is a branch without a condition. People
who think this is useless, please turn on your brain. Simply said,
branches can't jump far in memory, so if you want position-
independent code, then B can be actually useful.

Ex.:

is translated to:

That's it basically. As I said, this can be actually useful for people
who want position-independent code.

B 0x00006000

BEQ R0, R0, 0x00006000

1.10 BAL (Branch and Link) Instruction
The next pseudo-instruction is similar to the real MIPS instruction
JAL (Jump and Link) being the only difference that branch does not
have a far range like JAL and is once again useful for position-
independent code.

Ex.:

Would branch and link to 0x0046000C. Translation:

Again: None of these instructions have to be used. They're only
useful for people who want their code to be position-independent.

BAL 0x0046000C

BGEZAL R0, 0x0046000C

1.11 CL (Clear) Instruction
This is one of the instructions I personally would call useless,
however, who knows, maybe it is useful somewhere. Basically it just
clears a whole instruction and sets it to 0x00000000.

Ex.:

Translated to:

I guess that one is clear too. Why I implemented it? I have no idea. I
implemented it earlier (around CajeASM v2.1) and it stayed there
since then and didn't delete it so far. Maybe it's useful somewhere,
who knows.

CL T0

ADD T0, R0, R0

2. Directives
After we're done with the pseudo-instructions and you now know of the
pseudo-instructions, we now may move on to something more
assembler-specific: “Directives”. Directives allow the ASM programmer
to give direct commands to the assembler itself. It “directs” and “leads”
the assembler and are not related to MIPS instructions itself. In short,
they're not translated or written to your ROM and don't influence it. It
only influences the assembler. I'm going to explain each directive here.
Trust me, they're really useful.

2.1 .org address
This is our first directive and most likely going to be the most used
directive. This directive tells the assembler to put the following code to
the ROM offset you specify in there. Addresses are either prefixed with
'0x' or '$'. Both is allowed. That goes for all other immediate instructions.
(Later more to this)

Ex.:

This puts the following code below .org to ROM offset 0x861C0. I think I
don't have much to add here, it's really simple to understand. But one
thing: Yes, you can put more than one .org directives, respectively you
can put as much .org directives you want:

.org 0x861C0
ADDIU T0, T1, 0x33A6

.org 0x861C0
ADDIU T0, T1, 0x33A6

.org 0x86300
ORI T0, S1, 0x4466

.org 0x86400
ANDI T0, A0, 0x0022

2.2 .byte/.halfword/.word/.float
This directive is a bit more special. It let's you insert numeric values to
the ROM. This can be bytes, halfwords (16-bit), words (32-bit) or
floating-point values. The same like above applies, you use the prefixes
'0x', '$' for hexadecimal, '#' for decimal and '%' for binary. (Again: We
later explain this in …) However, floating-point values should be
represented in decimal.

Ex.:

As you can see, you can also put more bytes, floats, halfwords or words
by separating each of them by commas. Remember to use the .align
directive to re-align in case you write MIPS ASM code after one or more
of these directives or else your MIPS instructions are not written to a 4
byte boundary.

2.3 .align alignment, (optional) fill
This directive is also important in case your code isn't properly aligned
anymore, for example, after putting in amount of bytes which are not
divisible by 4. This would cause following instructions not be properly put
to a 4 byte boundary, resulting in a different instruction that you originally
wanted. I'm going a bit into more detail in this, because this is important
to know.

Ex.:

.float #25.668

.byte 0x68, 0x66, 0x4A, 0x3C, 0x22

.halfword 0x6C2A, 0x366A

.word 0x80361482, 0x803A64D1

.org 0x7E4E00
.byte 0x24, 0x5A, 0x26, 0x66, 0x47, 0x36

LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

If we now assemble the above and look up the code in a disassembler
of your choice (CajeASM gets one soon)

It properly inserted the bytes, but look what happened with our MIPS
instructions. Each instruction is 4 bytes long. We inserted 6 bytes. That
are 2 bytes out of the normal range. The solution is our directive: .align.
With the help of this directive we can force the assembler to keep the
following code in a byte boundary of your choice. So, we have to align
our code to a 2 byte boundary. Here:

And if we now look at our output:

Cool, isn't it? Now our code is properly aligned again by simply forcing
the current position of our assembler to be a multiply of two.

Optionally you can also fill the skipped bytes, by specifying the 2nd
operand in .align:

.org 0x7E4E00
.byte 0x24, 0x5A, 0x26, 0x66, 0x47, 0x36

.align #2
LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

And we get:

(Look the first byte at 0x007E4E00. It's 0xFF)

2.4 .skip size, (optional) fill
This directive simply let's you skip bytes and optionally you can fill the
skipped bytes with 'fill'.

We skip 8 bytes and then write our instructions. I think not any further
explanation is needed. You can optionally fill the skipped bytes with 'fill'
argument.

.org 0x7E4E00
.byte 0x24, 0x5A, 0x26, 0x66, 0x47, 0x36

.align #2, 0xFF
LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

.org 0x7E4E00
.skip #8

LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

2.5 .incbin “filename.bin”
This directive tells the assembler to include a binary file into your code.
You can use the .org directive and then use the .incbin directive and
your binary file is put there.

This would put the binary file into offset 0x7E4E00.

2.6 .incAsm/.inc/.include “filename.asm”
This directive is another include directive, but let's you include ASM files
instead. It's basically the same like above, you simply write the path to
your ASM file. Just saying, that you can either write .incAsm, .inc,
.include. All do the same.

Ex.:
TestASM.asm:

.org 0x7E4E00
.incbin „file.bin“

.org 0x4C00
.skip #8

LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

.org 0x7E4E00
LUI T0, 0x8034
ADD T0, T1, T2

ADDIU T0, T1, 0x366A

Main.asm:

This would first assemble the included file to offset 0x7E4E00 and then
after this is assembled it will return to the normal routine and assemble
the rest at 0x861C0. Yes, you can also include more than one files and
you can include files in an included file.

2.7 hex { hex values }
The next directive is similar to the numeric value directives. In this case
however we can insert an infinite number of hex values without a
specified length like word, halfword or byte. (In SM64 it's useful for
behavior scripts, mostly also because you just can copy it out of VL-
Tone's docs and put it right into this directive)

This would put this array of bytes into offset 0x21CCDC.

.incasm „TestASM.asm“
.org 0x861C0

ORI T0, R0, 0x3645
ORI T1, R0, 0x3314
BGT T0, T1, 0x00003680
NOP

.org 0x21CCDC
hex { 0C 00 00 00 80 2C B1 C0 }

2.8 .ascii/.asciiz
The last directive we're gonna look at are these two. As you can kinda
guess, it's the directive, which let's you insert ASCII string text into the
ROM. The major difference between .ascii and .asciiz is, that .asciiz is a
zero-terminated string. (After the string is written, a NULL (0x00) is
added after the string) It's recommended to use .asciiz, as most N64
games read ASCII text 'till the next null byte.

Would put ASCII string “Hello World” to offset 0x861C8.

3. Labels & Defines
Our next subject is: “Labels & Defines”. This one is probably more
interesting to you, as this is again more code-specific. It allows you
some benefits and eventually makes your asm programming life easier.
So, continue and read carefully.

3.1 Labels
What is a “Label” you ask. Well, a label is nothing else than a name of
the current location the label was placed at. If my current position is at
0x60004 and I place a label called “MyLabel”, then this label would've
the offset 0x60004. Now, we could branch with branch instructions to
that label. The benefit? Well, you no longer have to calculate the ROM
offset you want to branch to. Instead, the assembler settles all this stuff
and you just need to declare a label and then you can branch to it.

I'm showing a small example to give you clear picture of this. First, let's
do it the “hard way”:

.org 0x861C8
.asciiz „Hello World“

Please take a look at BEQ and BNE. Each instruction is 4 bytes long, so
we just have to count each 4 bytes to get the offset we want to branch
to. It's simple. But then on the other side it's really annoying. Imagine if
you just forgot an instruction and then you have to always add 4 again.
Or what if you didn't count right? All these problems are solved if we use
labels. With labels we don't have to count or even think about the offset.

The Easy Way (and most recommended way):

ADDIU SP, SP, 0xFFE8 ; 0x00
SW RA, 0x14(SP) ; 0x04
ORI T0, R0, 0x000A ; 0x08
ORI T1, R0, 0x000C ; 0x0C
BEQ T0, T1, 0x00000020 ; 0x10
NOP ; 0x14
BNE T0, T1, 0x00000028 ; 0x18
NOP ; 0x1C

LUI T0, 0x8034 ; 0x20
SH T1, 0xB218(T0) ; 0x24

LW RA, 0x14(SP) ; 0x28
JR RA ; 0x2C
ADDIU SP, SP, 0x18 ; 0x30

You see now how simple it is? The assembler automatically calculates
the position of where the label is placed at and converts it to the real
offset. That will make things definitely easier! Plus, labels can also give
a better overview what the below code is supposed to do. Like label
“Exit” we know that this part of code is for exiting the current subroutine.

Labels work in all branch instructions and also work in jump instructions,
if it's really needed.

ADDIU SP, SP, 0xFFE8 ; 0x00
SW RA, 0x14(SP) ; 0x04
ORI T0, R0, 0x000A ; 0x08
ORI T1, R0, 0x000C ; 0x0C
BEQ T0, T1, IfTrue ; 0x10
NOP ; 0x14
BNE T0, T1, Exit ; 0x18
NOP ; 0x1C

IfTrue:
LUI T0, 0x8034 ; 0x20
SH T1, 0xB218(T0) ; 0x24

Exit:
LW RA, 0x14(SP) ; 0x28
JR RA ; 0x2C
ADDIU SP, SP, 0x18 ; 0x30

3.2 Defines
The next thing we come to are “Defines” or “Variables”. They are
recommended for overview, structure and allowing (in case you release
your ASM code) let others modify it. Like for example, people would just
have to change a define which is declaring the costs for some item
instead of looking through the code and finding that part.

Defines are made by writing

[NameHere]: ($, 0x, # or %) value

($, 0x = Hexadecimal; # = Decimal, % = Binary)

If you use a define in an immediate instruction, you would call it by
writing:
@NameHere

The assembler then automatically replaces the define with the value you
declared the define with.

The assembler recognizes that “Var1” is decimal 120 and this is what
the assembler writes:

(0x78 = 120 (decimal))

This also works with hexadecimal and binary.

[Var1]: #120

ADDIU T0, T1, @Var1

ADDIU T0, T1, 0x78

4. Additional Information
So, we finally came to the end of my CajeASM manual. This last chapter
will give you some important additional information relating to labels,
defines and hexadecimal, decimal and binary values. You should
consider reading this one too, as it can be also helpful. But on this part,
I'm going to say goodbye already and have fun coding!

4.1 About Upper/Lower Half
This part is pretty important for defines. CajeASM is able to recognize
32-bit defines and splits them up into upper half and lower half. So, if
you write a LUI and ORI instruction with the define, it will take the upper
half into LUI and the lower half into ORI. The same for all loading/storing
instructions and other lower half instructions. To give a small example:

Is translated to:

You see, this can be useful for anything you can imagine.

[Var1]: 0x8034B218

LUI T0, @Var1
LH T0, @Var1(T0)

[Var1]: 0x8034B218

LUI T0, 0x8034
LH T0, 0xB218(T0)

4.2 Decimal, Hexadecimal, Binary values
As you saw throughout the whole manual, we've made use of different
value types. The usual, most used type in ROM Hacking generally is
obviously hexadecimal. In CajeASM hexadecimal values are always
prefixed with “0x” or “$”. Personally I use “0x” prefix for values and “$”
for addresses. But as I said, both are the same and indicate that the
following value is a hexadecimal value. Then there are decimal values,
which are prefixed with “#”. CajeASM automatically converts them to
their hexadecimal representatives. Then, at last, there are binary values,
which are prefixed with “%”. I guess there's nothing more to explain it,
but remember to always check that you're using the correct format or
else CajeASM crashes.

Syntax:

Binary: %value
Decimal: #value
Hexadecimal: 0xValue or $Value

4.3 Comments
CajeASM allows you to put comments in your code, which are ignored
by the assembler. Commenting your code is always a good idea and
might give others, who use your code, an overview and eventual
documentation of what exactly the code does.

There are two types of comments: Line comments and block comments.
Line comments are only ignored until the next line, while block
comments are ignored in a block 'till the symbol follows which ends the
comment.

For line comments you use the symbol ; or //

[Var1]: 0x8034B218

LUI T0, 0x8034 // Everything is ignored, 'till the next line.
LH T0, 0xB218(T0)

And then there are block comments, where everything between /* … */
is ignored.

That's it basically. Always be sure to document your code.

[Var1]: 0x8034B218

LUI T0, 0x8034 /* Everything is ignored,
'till the block end.
LH T0, 0xB218(T0)*/

